
MENG	471a	 	 	 	 	 	 	 	 	 	 				Final	Report	

Special	Projects	I	 	 	 	 	 	 	 	 	 	Dec.	20,	2017	

	

Applications	in	RFID	Technology	

Tim	Foldy-Porto	

Advisor:	Dr.	Lawrence	Wilen	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Acknowledgements	

We	would	like	to	acknowledge	the	Yale	School	of	Engineering	and	Applied	Science	dean’s	office	

for	their	generous	financial	support.		

	

	 	

	 2	

Table	of	contents	

	

1. Introduction…………………………………………..…………………………………………..…………………3	

2. Background…………………………………………..……………………………………………..……………….4	

3. Design	and	approach…………………………………………..………………………………………………..5	

a. Card	reader………………………………………………………………………………………………..5	

b. Card	writer…………………………………………………………………………………………………8	

c. FSK	Signal	generation	through	delayed	pulses………………………………………….10	

d. FSK	Signal	generation	through	ASICs…………………………………………………………12	

4. Results……….14	

a. Card	reader……………………………………………………………………………………………….14	

b. Card	writer………………………………………………………………………………………………..15	

c. FSK	Signal	generation	through	delayed	pulses…………………………………………..16	

d. FSK	Signal	generation	through	ASICs………………………………………………………….16	

5. Next	steps………..17	

	 	

	 3	

1. Introduction	
Radio-Frequency	Identification	(RFID)	technology	has	proliferated	in	the	past	twenty	years:	it	is	

currently	employed	in	a	variety	of	industries,	ranging	from	commerce,	to	transportation	

logistics,	to	infrastructure	management	and	protection.	The	technology	uses	small,	passive	tags	

to	store	information,	generally	an	identification	code,	which	can	be	accessed	by	a	reader.	There	

are	currently	many	companies	which	offer	RFID	products,	for	various	applications:	the	London	

transportation	authority	uses	RFID	Oyster	Cards	to	calculate	fares	for	its	passengers,	who	can	

swipe	into	any	form	of	public	transportation;	Zebra	Technologies,	in	a	partnership	with	the	NFL,	

uses	RFID	to	track	players	movements	on	the	field,	allowing	for	real-time,	in-game	statistics;	HID	

Global	produces	high	quality	identification	cards,	including	the	ones	distributed	by	universities,	

that	can	be	used	for	physical	access	control.		

	

Passive,	radio-based	technology	dates	back	to	World	War	II,	with	the	invention	of	a	covert	

listening	device	called	“The	Thing”	by	Leon	Theremin	for	the	Soviet	Union.	Although	not	exactly	

the	same	as	modern	day	RFID,	“The	Thing”	employed	backscatter	modulation	of	an	incident	

radio	wave	to	transmit	audio	signals	to	a	listener,	which	is	the	essential	operating	principle	of	

RFID	technology	today.	At	the	same	time,	the	German	army	used	a	crude	version	backscatter	

modulation	to	identify	whether	incoming	aircraft	on	their	radar	were	friend	or	foe.	German	

pilots	found	that	if	they	did	a	barrel	roll	while	flying	towards	a	radar	station,	they	would	cause	a	

disturbance	in	the	incident	radio	wave	that	would	be	identifiable	to	radar	operators.		

	

Today	RFID	is	ubiquitous,	appearing	in	a	variety	of	places.	There	has	been	a	great	amount	of	

academic	research	done	into	the	properties	of	this	technology	and	its	potential	applications	in	

the	future.	Private	corporations	are	also	very	interested	in	RFID,	and	have	used	their	own	R&D	

labs	to	develop	numerous	advances	in	this	technology,	including	many	(albeit	proprietary)	

revolutionary	collision	detection	processes,	which	allow	a	single	reader	to	process	multiple	RFID	

tags	in	its	vicinity	simultaneously.	In	addition,	much	corporate	research	is	being	done	into	the	

security	and	encryption	algorithms	behind	RFID	tags,	including	by	the	company	HID	Global,	the	

manufacturer	of	Yale’s	own	ID	cards.	

	

	 4	

	

2. Background	
Due	to	RFID’s	widespread	usage	as	a	physical	access	device,	there	has	been	a	great	amount	of	

interest	in	the	system	from	the	electronics	and	security	hobbyist	community.	There	has	been	a	

significant	amount	of	research	conducted	and	published	online	about	hacking	RFID	systems.	

Several	people	have	successfully	been	able	to	clone	an	HID	proximity	card,	as	well	as	exploit	

other	features	in	RFID	based	security	systems.	Furthermore,	there	are	many	ASK	readers	

commercially	available	for	very	low	prices	on	online	retailers.	These	devices	are	capable	of	

reading	and	duplicating	ASK	modulated	RFID	cards,	which	is	a	threat	to	many	basic	security	

systems.		

	

The	cards	upon	which	we	conducted	our	research	were	FSK	modulated,	a	term	we	will	define	in	

depth	in	subsequent	sections,	meaning	they	could	not	be	read	or	manipulated	using	a	cheap	

ASK	reader.	While	we	knew	this	to	be	true	from	theoretical	presumptions,	previous	

experimentally	research	we	had	conducted	had	indicated	that	Yale	ID	cards	were	definitely	not	

ASK	compatible,	which	prompted	us	to	search	for	alternative	methods	of	interfacing	with	the	

Yale	RFID	cards,	leading	to	this	project	on	RFID	and	its	potential	applications.		

	 	

	 5	

3. Design	and	approach	
3.1. Card	reader	

The	first	part	of	our	project	consisted	of	designing	and	building	a	device	that	could	read	the	data	

from	an	FSK	encoded	RFID	card.	For	convenience,	we	tested	our	reader	using	a	standard	issue	

Yale	ID	card,	which	we	knew	to	operate	at	a	frequency	of	125	kHz	based	on	documentation	

from	the	card	manufacturer.	Additionally,	from	the	international	standard	for	contactless	

integrated	circuit	cards	(ISO/IEC	14443-4),	we	deduced	that	Yale	ID	cards	used	FSK	modulation	

and	were	encoded	by	the	processes	of	Manchester	encoding	and	decimation,	which	will	be	

discussed	later	in	the	results	section.		

	

The	primary	analog	section	of	our	reader	was	built	following	documentation	of	a	similar	project	

found	online,	titled	“DIY	FSK	RFID	Reader.”	(cite)	The	goal	of	that	project	was	to	“present	a	

simple	solution	for	reading	FSK	tags	which	addresses	the	following	shortcomings:	make	it	robust	

and	reliable	for	real-world	environments,	base	it	on	the	Arduino,	and	build	the	RFID	reader	

ourselves	using	a	few	simple	low-cost	parts,”	which	aligned	quite	nicely	with	the	goals	of	our	

own	project.	On	the	following	page	is	schematic	of	the	circuit	that	we	built.	

	

Overview	of	the	circuit	

The	Arduino	produces	a	125kHz	square-wave,	which	drives	the	LC	tank	(tuned	to	resonate	at	

125kHz)	consisting	of	L1	and	C1.	When	a	RFID	card	comes	close	to	the	tank,	they	inductively	

couple	and	the	card	draws	a	small	amount	of	power	from	the	reader,	causing	a	drop	in	

amplitude	of	the	125kHz	sine	wave	present	at	the	junction	of	L1	and	C1.	The	amplitude	of	this	

sine	wave	is	peak-detected	by	the	diode,	C2,	and	R1.	C3	then	decouples	any	DC	bias	from	the	AC	

signal	(which	is	still	following	the	peak	of	the	125kHz	sine	wave).	R2	and	C4	serve	as	a	low-pass	

filter	to	remove	any	noise.	The	signal	is	then	amplified	by	OP1	and	placed	on	top	of	a	2.5V	bias	

from	OP2,	which	in	turn	feeds	into	a	comparator	(OP4)	which	converts	the	signal	to	a	square-

wave.		

	 6	

	
Fig 3.1. Analog RFID FSK reader circuit. This circuit communicates with a given FSK RFID tag and turns its

data into a binary signal, which is then decoded into readable data by an Arduino.

	

Physically,	this	square-wave	represents	the	amplitude	of	the	125kHz	sine	wave	that	is	present		

between	L1	and	C1,	which	can	be	modulated	by	a	nearby	RFID	tag.	The	square-wave	present	at	

D1	is	then	fed	into	an	Arduino,	which	decodes	the	FSK	modulation,	Manchester	encoding,	and	

decimation	in	order	to	generate	numerically-representable	binary	data.	

	

	

	 7	

Overview	of	the	code	

FSK	modulation	works	by	encoding	0s	and	1s	as	different	frequencies,	so	the	decoding	process	

consists	of	determining	the	frequency	of	a	given	period	in	the	incoming	square-wave	(from	D1	

on	the	analog	circuit)	and	categorizing	it	as	either	a	0	or	a	1.	The	first	part	of	the	our	code	for	

the	Arduino	established	a	timer	which	we	used	to	time	the	length	of	an	incoming	pulse.	For	

each	period	of	the	square-wave,	we	took	two	measurements:	one	of	the	low	pulse	and	one	of	

the	high	pulse.	A	form	of	error	detection	was	inherent	in	this	method	of	frequency	detection,	

since	we	could	expect	the	low	pulse	and	the	high	pulse	to	have	the	same	length	for	a	given	

period.	A	block	diagram	of	this	section	of	code	is	as	follows:	

	
As	the	program	detected	the	length	of	the	incoming	pulses,	it	stored	the	associated	binary	value	

in	an	array	called	Data,	as	shown	above.	This	process	fully	decoded	the	FSK	encoding,	but	it	was	

clear	from	the	length	of	Data	that	there	were	other	encoding	processes	that	need	decoding.	

Documentation	from	the	manufacturer	of	Yale	IDs	indicated	that	the	length	of	a	given	ID	was	44	

bits,	yet	the	length	of	our	array,	Data,	exceeded	500	bits.	It	was	quite	clear	from	a	visual	

inspection	that	the	data	was	encoded	using	decimation.	The	program	to	decode	this	was	simple:	

check	for	large	blocks	of	single	repeated	value,	then	replace	it	with	a	single	instance	of	that	

value.	For	example,	if	a	section	of	Data	looked	like	this:	

000001111110000000000111111	

Our	algorithm	replaced	it	with:	

01001	

The	algorithm,	in	this	case,	determined	a	large	block	to	be	five	or	six	repeated	values,	which	is	

why	the	large	chunk	of	0s	in	the	middle	of	the	above	string	is	replaced	not	by	one,	but	by	two	

instances	of	0.		

	

	 8	

While	the	data	was	now	in	a	more	manageable	state,	it	was	still	twice	as	long	as	expected,	

indicating	one	final	encoding	process.	We	again	used	ISO/IEC	14443	along	with	a	visual	

inspection	of	the	data	to	determine	that	it	was	encoded	by	Manchester	encoding.	The	program	

to	decode	this	process	was	also	quite	simple:	examine	blocks	of	two	bits	at	a	time;	if	a	given	

block	went	low-high	(01),	we	replaced	it	with	a	single	1;	if	the	block	went	high-low	(10),	we	

replaced	it	with	a	single	0.	For	example,	if	a	section	of	Data	looked	like	this:	

010101101010	

Our	algorithm	replaced	it	with:	

111000	

This	process	reduced	the	string	down	to	the	appropriate	size	of	44	bits,	thus	indicating	a	valid	ID	

code.		

	

3.2.	Card	writer	

After	building	a	working	card	reader,	it	was	only	natural	to	build	an	RFID	card	writer,	or	a	device	

that	mimics	an	RFID	tag.	As	a	test	of	functionality,	we	chose	to	use	the	card	reader	that	we	had	

built:	if	our	RFID	writer	could	“trick”	the	reader	into	outputting	the	same	code	as	a	given	RFID	

tag,	then	the	device	would	be	successful.	This	process	proved	to	be	quite	trivial	in	terms	of	both	

hardware	and	software,	as	we	were	essentially	creating	an	inverse	device	to	the	card	reader	

that	we	had	already	made,	but	it	did	reveal	several	interesting	problems	with	the	signal	

generation	ability	of	microcontrollers,	which	became	the	focus	of	our	research	for	the	second	

half	of	this	project.		

	

The	hardware	and	software	for	this	project	were	designed	solely	by	the	members	of	this	project,	

but	it	is	important	to	note	that	very	similar	devices	can	be	found	documented	online.	The	

publication	that	we	based	our	reader	circuit	on	included	a	small	section	on	an	inverse	device,	

which	is	almost	identical	to	the	one	that	we	created.	Additionally,	hobbyists	Asher	Glick	and	

Micah	Dowty	have	published	similar	documentation	and	schematics	for	similar	projects	on	their	

personal	websites	and	Githubs	(cite).	

	

	

	 9	

Overview	of	the	circuit	

	
Fig 3.2. Circuit schematic for our FSK RFID writer.

The	circuit	for	the	writer	is	incredibly	simple,	which	is	clear	from	figure	3.2	above.	Essentially,	

the	Teensy	3.2	microcontroller	produces	an	FSK	digital	signal,	which	controls	the	current	flowing	

through	the	transistor.	When	the	signal	is	high,	the	transistor	is	saturated,	thus	allowing	current	

to	flow	and	closing	the	LC	tank,	which	is	tuned	to	resonate	at	125	kHz.	When	the	circuit	is	closed	

and	held	in	proximity	of	the	reader,	the	LC	tank	is	driven	at	125	kHz	by	the	reader,	thus	drawing	

power	and	modulating	the	amplitude	of	the	driving	signal.		

	

Overview	of	the	code	

The	purpose	of	the	code	in	the	writer	was	to	generate	the	FSK	modulation	signal	pictured	

above.	The	basis	for	this	signal	was	a	44	bit	code	(in	practice,	one	that	we	had	discovered	by	

scanning	a	real	RFID	card	with	our	reader).	Our	program	took	each	bit,	Manchester	encoded	it,	

and	decimated	it,	creating	a	final	string	of	around	600	bits.	It	then	used	this	sequence	to	

generate	a	digital	square-wave,	where	a	0	corresponded	to	a	period	of	64	µs	and	a	1	

corresponded	to	a	period	of	80	µs.	While	in	theory	this	code	is	very	simple,	the	architecture	of	

the	Teensy	microcontroller	made	it	difficult	to	ensure	that	the	different	periods	were	in	phase;	

i.e.	that	the	generation	of	one	period	began	exactly	when	the	previous	period	ended.		

	 	

	 10	

3.3.	FSK	Signal	generation	through	delayed	pulses	

Due	to	the	numerous	issues	with	generating	a	precise	FSK	pulse	based	on	a	given	ID	code	using	

an	Arduino	microcontroller	(discussed	in	the	results	section),	we	decided	to	build	designated	

hardware	for	the	job.	We	intended	our	first	device	to	operate	in	cooperation	with	the	Arduino,	

giving	it	more	time	to	process	the	data	and	hence	removing	any	timing	issues.	

	

Overview	of	the	circuit	

	
Fig 3.3. Pulse delay circuit consisting of six flip-flops.	

	

In	short,	this	circuit	(Fig.	3.3)	takes	a	clock	pulse,	divides	it	by	eight,	and	delays	it	seven	times	to	

produce	eight	separate	square-waves,	each	delayed	by	an	eighth	of	a	period.	For	example,	

suppose	the	clock	is	oscillating	at	a	frequency	of	125	kHz	(8	µs	period).	The	top	three	JK	flip-

flops	take	this	pulse	and	divide	it	in	half,	three	times	sequentially,	thus	producing	a	15.6	kHz	(64	

µs	period)	square-wave	on	OUT1.	The	lower	three	flip-flops	are	D-type,	meaning	whatever	data	

is	present	on	D	is	shifted	to	Q	at	the	leading	edge	of	the	clock	pulse.	Since	the	clock	pulses	every	

8	µs,	the	signal	on	OUT2	is	just	the	signal	on	OUT1	delayed	by	8	µs.	Similarly,	OUT3	is	delayed	8	

µs	from	OUT2,	and	OUT4	another	8	µs	from	OUT3.	To	delay	another	eighth-period	(8	µs),	we	

	 11	

select	OUT5,	which	is	exactly	one	half-period	out	of	phase	with	OUT1.	Similarly,	OUT6,	OUT7,	

and	OUT8	are	the	complement	of	OUT2,	OUT3,	and	OUT4,	filling	in	the	remainder	of	the	digital	

delay	cycle.	Visually	represented,	outputs	one	through	eight	look	as	follows:	

	
Fig 3.4. Graphical representation of the outputs of our pulse delay circuit vs. time.	

	

We	can	see	from	figure	3.4	that	if	we	first	select	OUT1	as	our	output,	our	device	will	generate	a	

square-wave	with	a	period	of	64	µs.	However,	if	at	some	point	during	the	low	part	of	the	cycle	

we	switched	from	OUT1	to	OUT2,	the	output	of	our	device	would	see	a	low	period	of	40	µs	due	

to	the	8	µs	delay	on	OUT2.	In	the	same	way,	if	we	then	switched	from	OUT2	to	OUT3	during	the	

high	portion	of	the	signal,	our	output	would	see	a	high	period	of	40	µs.	Thus	by	switching	twice	

between	three	64	µs	signals	(15.6	kHz),	we	have	generated	a	single	80	µs	period	(12.5	kHz).		

	

This	is	particularly	useful	in	the	case	of	generating	an	FSK	signal	that	switches	between	15.6	kHz	

and	12.5	kHz,	as	was	necessary	for	our	RFID	writer.	With	this	circuit	in	place,	it	was	then	up	to	

the	Arduino	to	decide	when	to	switch	output	signals.	This	was	accomplished	by	running	the	

eight	outputs	into	a	3-bit	multiplexer	and	controlling	the	addressing	pins	with	the	Arduino	

	 12	

digital	outputs.	This	was	advantageous	to	our	previous	card	writer	design	because	it	allowed	a	

larger	time	window	for	the	Arduino	to	read	the	data	and	decide	a	course	of	action.	If	the	data	

bit	to	encode	was	a	1,	the	Arduino	had	a	24	µs	window	(from	the	falling	edge	of	OUT1	to	the	

rising	edge	of	OUT2)	to	switch	signals.	This	new	design	was	much	better	than	our	previous	one	

in	many	respects,	but	it	was	not	particularly	versatile,	as	it	only	allowed	for	the	generation	of	

two	distinct	signals.		

	

3.4.	FSK	Signal	generation	through	ASICs	

ASICs	(application-specific	integrated	circuits)	are	used	in	place	of	PLAs	(programmable	logic	

arrays)	and	FPGAs	(field-programmable	gate	arrays)	for	applications	that	require	a	single	

mathematical	function	to	be	completed	as	efficiently	as	possible.	For	example,	they	are	not	

used	for	computer	processors,	which	are	required	to	perform	a	variety	of	functions,	but	they	are	

often	used	for	cryptocurrency	mining	rigs,	which	are	required	to	repeatedly	perform	the	

encryption	process	of	hashing.		

	

For	the	purpose	of	generating	an	arbitrary	FSK	digital	signal,	we	decided	that	an	ASIC,	serving	as	

designated	hardware	for	the	job,	would	be	more	reliable	and	more	efficient	than	a	

microcontroller.	Additionally,	we	thought	that	a	versatile	arbitrary	digital	signal	generator	could	

have	applications	in	the	field	of	control	systems,	which	further	motivated	our	decision	to	

produce	an	ASIC.	Since	this	designated	hardware	was	intended	to	replace	the	Arduino	in	our	

original	card	writer,	we	set	similar	goals	for	functionality:	the	device	should	be	able	to	take	a	

data	string	(an	ID	code),	a	set	of	timing	parameters	(rules	that	convert	a	data	value	to	a	period	

length),	and	a	clock,	and	convert	them	into	a	digital	FSK	output	signal.		

	

Overview	of	the	circuit	

A	full	explanation	of	the	inner	workings	of	this	circuit	would	be	long	and	unilluminating	for	the	

scope	of	this	paper,	but	we	will	present	a	high-level	description	of	this	circuit’s	operation.	This	

circuit	takes	four	inputs:	a	register	titled	DATA,	and	register	titled	ACTION,	a	set	of	two	registers	

each	containing	a	5-bit	binary	number,	and	a	clock.	For	the	production	of	a	single	period	of	a	

given	frequency,	the	circuit	begins	by	shifting	DATA	by	one.	If	the	bit	that	is	shifted	out	is	a	1,		

	 13	

	
Fig 3.5. Full schematic of our arbitrary digital FSK signal generator. 	

	

the	left	number	register	(located	above	the	left	row	of	five	AND	gates)	drives	the	five	OR	gates	

in	the	lower	right-hand	corner	of	figure	3.5.	Since	the	right	number	register	is	multiplied	by	the	

complement	of	the	data	output,	it	drives	the	OR	gate	array	if	the	data	output	is	a	0.		

	 14	

On	the	left	side	of	the	circuit	are	two	4-bit	counters	that	are	linked	together	via	the	D-type	flip-

flop,	AND	gate,	and	OR	gate	to	form	an	8-bit	counter.	This	effective	8-bit	counter	continuously	

counts	up	based	on	the	input	clock	pulse.	When	the	counter	reaches	its	maximum	value	(32,	in	

the	way	we	configured	the	circuit),	it	returns	to	some	starting	value	and	begins	counting	up	

again.	This	starting	value	is	determined	by	the	five	bits	on	the	OR	gate	array,	which	are	fed	into	

the	load	pins	of	the	8-bit	counter.	In	this	way,	we	were	able	to	control	the	time	it	took	for	the	

counter	to	reach	its	maximum	value	by	adjusting	the	values	stored	in	the	two	number	registers.		

	

When	the	counter	reaches	its	maximum	value,	it	triggers	the	ACTION	register	to	shift	once.	For	

the	sake	of	our	device,	ACTION	was	configured	to	have	the	values:	

{0	1	0	1	0	1	0	1}	

Thus,	in	our	case,	clocking	ACTION	twice	was	equivalent	to	outputting	one	period	of	a	square-

wave.	The	length	that	a	given	ACTION	value	remains	as	the	output	of	the	circuit	(i.e.	the	period	

of	one	half	of	the	square-wave)	depends	on	the	amount	of	time	it	takes	for	the	counter	to	reach	

its	maximum	value.	This	length	of	time	is	controlled	by	whichever	number	register	is	driving	the	

OR	gate	array,	which	is	in	turn	controlled	by	the	DATA	value.	The	clocking	of	the	ACTION	triggers	

a	new	data	value	to	be	released,	and	the	cycle	starts	over	again.		

	

	

	

4. Results	
4.1.	Card	reader	

The	card	reader	that	we	built	worked	as	expected,	aside	from	the	occasional	glitch	due	to	bad	

connections.	We	initially	built	the	circuit	on	a	breadboard,	but	after	encountering	connection	

problems,	we	decided	to	solder	our	circuit	onto	a	proto-board,	which	was	much	more	reliable.	

When	we	probed	various	parts	of	the	oscilloscope	with	the	oscilloscope,	we	saw	it	behaving	as	

expected	based	on	our	assumptions	during	the	design	phase	(section	3.1	of	this	report).	Figure	

4.1	(on	the	following	page)	shows	the	peak-detection	of	the	amplitude-modulated	sine	wave	at	

the	junction	of	the	diode,	C2,	and	R1	(in	Fig.	3.1).		

	

	 15	

	
Fig 4.1. Photo of an oscilloscope measuring the voltage at the junction between the diode, C2, and R1 (Fig.

3.1) vs. time. 	

	

The	fast	oscillation	shown	in	figure	4.1.	was	due	to	the	125	kHz	carrier	wave,	while	the	slow	

oscillation	was	due	to	the	FSK	modulation	from	the	scanned	RFID	card.	If	the	oscilloscope	

pictured	in	figure	4.1	had	been	set	to	a	longer	timescale,	we	would	see	that	the	slow	oscillating	

portion	of	this	waveform	was	not	of	constant	frequency,	but	rather	it	changed	between	two	

frequencies	corresponding	to	the	FSK	modulation	from	the	card.		

	

4.2.	Card	writer	

The	first	card	writer	we	built	(based	on	the	Teensy	microcontroller),	performed	as	expected	but	

very	unreliably.	By	using	the	card	reader	that	we	had	built,	we	were	able	to	examine	the	length	

of	the	FSK	pulses	that	the	Teensy	was	generating.	According	to	the	specifications	of	the	card	

manufacturer,	we	needed	to	generate	a	period	of	length	64	µs	for	a	0,	and	of	length	80	µs	for	a	

1.	In	practice,	however,	the	pulses	from	the	Teensy	for	a	0	ranged	from	54	µs	to	74	µs,	and	the	

pulses	for	a	1	ranged	from	70	µs	to	90	µs.	This	uncertainty	was	far	too	high	given	the	precision	

required	for	our	application.	While	most	of	the	pulses	lengths	were	within	±4	µs	of	the	target	

value,	there	were	still	occasional	outliers	which	corrupted	the	data	being	transmitted.	This	

meant	that	the	card	writer	would	sometimes	succeed	in	sending	the	right	ID	code	and	would	

	 16	

sometimes	send	an	invalid	ID	code.	It	was	this	unreliability	which	prompted	us	to	search	for	

more	accurate	methods	of	generating	the	required	digital	FSK	signal.		

	

4.3.	FSK	Signal	generation	through	delayed	pulses	

This	circuit	succeeded	in	generating	a	series	of	delayed	pulses,	as	shown	below	in	figure	4.2.		

	

	
Fig 4.1. Photo of an oscilloscope measuring four outputs of our pulse-delay circuit, as diagrammed in Fig. 3.3. 	

	

However,	the	lack	of	versatility	in	this	design,	as	mentioned	in	section	3.3,	led	us	to	stop	

working	on	this	circuit	before	it	was	fully	completed.	Although	we	never	had	a	chance	to	try	

generating	an	FSK	signal	with	the	addition	of	a	multiplexer	and	an	Arduino,	we	believed	it	would	

be	prudent	to	abandon	this	project	and	focus	on	building	a	more	versatile	signal	generator.		

	

4.4.	FSK	Signal	generation	through	ASICs	

This	circuit	worked	exactly	as	expected	with	no	unforeseen	errors.	We	did,	however,	have	to	

take	into	account	the	limitations	of	the	individual	parts	we	used	to	construct	the	circuit.	Since	

this	circuit	depended	heavily	on	a	steady	clock,	it	was	necessary	to	calculate	the	propagation	

delays	inherent	in	the	system.	We	found	that	the	system	behaved	well	below	a	clocking	

frequency	of	100	kHz,	but	above	that	it	started	to	produce	errors.	This	limitation	could	in	part	be	

remedied	by	buying	better	components	with	lower	rise	times,	but	also	by	redesign	of	the	

system	as	a	whole.		

	 17	

5. Next	steps	
As	mentioned	in	section	3.4,	our	design	of	an	arbitrary	digital	signal	generator	has	numerous	

applications	in	the	field	of	control	systems,	which	often	require	digital	signals	to	control	physical	

output	devices,	including	actuators,	motors,	lights,	and	speakers.	To	fully	realize	the	potential	of	

this	circuit	however,	it	is	necessary	to	mathematically	define	a	set	of	general	equations	

describing	its	functionality.	Then,	we	can	examine	how	to	implement	those	generalized	forms	

into	hardware	to	make	a	more	versatile,	and	useful,	function	generator.		

	

While	in	our	case	the	association	between	a	given	data	value	and	its	corresponding	timing	

parameter	was	hardwired	in	our	circuit,	this	relationship	can	be	generalized	as	a	function	of	

DATA.	For	example,	the	function	that	we	chose	was:	

𝑓 𝐷𝐴𝑇𝐴 𝑛 = 	 1 = 	 𝜏-0 = 	 𝜏.
	

In	other	words,	if	the	data	bit	to	encode	was	a	1,	we	set	a	period	length	of	𝜏-	for	our	square-

wave	output.	If	the	data	bit	was	a	0,	we	set	a	period	length	of	𝜏..	The	simplicity	of	our	function	

allowed	for	only	two	possible	output	frequencies,	but	it	is	possible	to	allow	more	frequencies	

simply	by	replacing	this	function	with	a	more	complicated	one,	as	long	as	it	can	be	implemented	

in	hardware.		

	

The	other	part	of	this	circuit	that	did	not	have	much	relevance	for	our	purpose	of	generating	FSK	

pulses,	but	is	completely	generalizable,	is	the	ACTION	register.	In	the	circuit	that	we	built,	we	let	

the	ACTION	simply	output	a	square	wave	with	a	50%	duty-cycle.	However,	if	we	were	to	

implement	a	more	complicated	action	sequence,	we	would	be	able	to	get	a	variety	of	

waveforms.	For	example,	the	sequence	

{1	0	0	0	1	0	0	0}	

is	a	square	wave	with	a	25%	duty-cycle.	Similarly,	if	we	included	multi-bit	action	sequences,	we	

would	be	able	to	adjust	the	signal	generators	resolution.	The	sequence	

00	01	10	11 	

represents	a	2-bit	digital	ramp	function.	This	is	advantageous	over	a	simple	counter	however,	

because	we	can	carefully	control	the	timing	of	each	step	of	this	ramp.		

